HETEROCYCLIC ORGANOBORON COMPOUNDS—XIII

DIRECT CHLORINATION OF BIS-(1,3-DIKETONATO)-BORONIUM SALTS

E. ISFAN and A. BARABÁS*

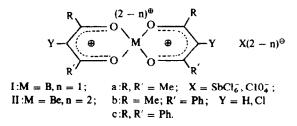
Institute of Atomic Physics, P.O. Box 35, Bucharest, Romania and

J. C. HAMMEL and J. A. S. SMITH University of Warwick, Coventry, England

(Received in the UK 21 May 1970; Accepted for publication 4 June 1970)

Abstract—Bis(1,3-Diketonato) boronium hexachloroantimonates, $(I,X = SbCl_6^-)$, of acetylacetone and benzoylacetone were chlorinated by chlorine gas in chloroform solution or suspension to obtain the boronium hexachloroantimonates of the corresponding 2-chloro-1,3-diketones.

WE HAVE previously reported the synthesis of the bis-(1,3-diketonato)-boronium cation (I), by a number of different pathways.^{1, 2} These cations are isoelectronic with the corresponding neutral beryllium chelates (II), which together with several other metals undergo electrophilic substitution of the 2-H atom by careful treatment with mild reactants.³⁻⁷ It was shown³ that e.g. the bromination of bis(acetylacetonato)beryllium by N-bromosuccinimide is a true substitution reaction of the chelate and not a multi-stage process, namely, dissociation of the chelate, bromination of the 8-diketone or of its anion, and final re-combination of the metal and the 2-bromo-1.3diketone. Bromination by free bromine in dry dichloromethane of the bis(2,4pentanedionato)beryllium⁸ or tris(2,4-pentanedionato)aluminium⁹ also proceeds without decomposition, to give the corresponding 3-chloro-chelates, whereas the copper complex¹⁰ of 2,4-pentanedione or 3-bromo-2,4-pentanedione is decomposed by bromine under the same conditions to give copper bromides and 3-bromo-2,4pentanedione or 3,3-dibromo-2,4-pentanedione, respectively. The bromination of some tris(3-phenyl-2,4-pentanedionato)chelates, which proceeds at the 2- and 4-Me groups is also accompanied by decomposition of the complexes:¹¹ however, it was clearly demonstrated that this decomposition follows the bromination.


Here we investigate the effect of the overall positive charge on the boronium chelate¹² on its reactivity to electrophilic substitution.

DISCUSSION

As the activation energy of the electrophilic attack of a positive fragment of the boron(III) cation is much higher than that of the neutral chelate no nitration of I (Y = H) by concentrated nitric acid in acetic acid occurs. No chlorination by N-chlorosuccinimide or bromination by N-bromosuccinimide takes place; the unchanged boronium salt is recovered in all cases. On introduction of [B(acac)₂]SbCl₆[(Ia), X = SbCl₆ Y = H] to a suspension of Cu(NO₃)₂, 3H₂O in acetic anhydride, brown *To whom correspondence should be addressed.

nitrogen oxides were evolved immediately, but only green inorganic solids could be recovered from the reaction mixture.

Chlorination by dry chlorine gas of $[B(acac)_2]SbCl_6$ and $[B(bzac)_2]SbCl_6$ (Ib, $X = SbCl_6^-, Y = H$) are the only successful substitution reactions. The rate of chlorine uptake decreases rapidly in the order Ia > Ib > Ic.

There may be two reasons for this; (i) A decrease in solubility of the boronium chelates $(X = SbCl_6^-, Y = H)$ in the above series, and (ii) an increase in steric hindrance between the substituent groups R_*R' and Y in the same series; models showed that in the planar *cis*-enol configuration of the dibenzoylmethane no chlorination could take place without rotation of the $R_*R' = Ph$ groups out of the plane of the chelated β -diketone molecule.

Analyses and spectra confirmed the postulated structures I, II of the bis(2-chloro-1,3-diketonato)beryllium(II) and boron(III) chelates. Chlorine substitution causes a characteristic bathochromic shift of the UV absorption maxima of the chelated enol form of the β -diketone: the changes are: $\Delta\lambda=272-295=-23$ nm for the free ligand (ref 13); 294-316=-22 nm (ref 1) for the beryllium chelate, and 296-327=-31 nm for the boron (III) chelate when the ligand is changed from β -diketone to the 3-chloro- β -diketone.

In the IR spectra the highest wavelength C—H stretching band [3110 cm⁻¹ in Be(acac)₂ 3140 cm⁻¹ in Ia, b and c (X = SbCl₆, Y = H) see ref 1)], attributed to the Y = H proton, is no longer present in the spectra of the Y = Cl chelates. The bands at 650–680 cm⁻¹ and 490–520 cm⁻¹ are tentatively assigned to the C—Cl stretching vibrations in the chloro-chelates (see Table 3).

The ¹H NMR spectra of β -diketone chelates are characteristic and are strongly dependent on the electric asymmetry of the complex. The chemical shifts of the methyl and methine protons for polar^{12, 14-16} and charged^{12, 16, 17} complexes suffer linear shifts from the values for neutral chelates due to the intramolecular electric fields. Similar effects are also observed in the C¹³ proton coupling constants^{15, 16} and ¹³C chemical shifts.¹⁸ The effect of chlorine substitution in neutral, polar metal chelates of 1,3-diketones has also been related to the change in electric field within the molecule caused by the chlorine substituent.¹⁹ Chlorine substituted in the chelates studied here leads to the disappearance of the Y = H signal and causes a characteristic downfield shift of the R,R' = Me signal throughout: $\Delta \tau = -0.2$ ppm for the boronium chelates and $\Delta \tau = -0.32$ ppm for beryllium acetylacetonate (Table 4). The difference in the downfield shift produced by the Cl atom is presumably due to a similar electric field effect due to the positive charge on the B atom. The NMR spectra of these chelates will be discussed in detail elsewhere.²⁰ ¹¹B NMR spectra of the boronium chelates (I, Y = H, Cl) exhibit a single peak at about -4.0 ppm downfield from that of boron

trifluoride etherate. ³⁵Cl NQR spectra of compounds I and II which are also in accordance with the proposed structures are discussed elsewhere. ²¹

No investigations of the mechanism of chlorination of the bis(β-diketonato) boronium chelates were undertaken but it seems probable that the substitution proceeds directly without dissociation and subsequent recombination of the chelate; the syntheses of the 3-chloro-acetylacetone chelates from the free diketone are always accompanied by side reactions which lead to black oily residues, whereas on direct chlorination the solutions remain clear and almost colourless; analytically pure chloro-chelate precipitates on concentration. The mode of reaction of the chlorine as a neutral molecule rather than as a formally positive reactant (see equation) may explain why only chlorination by gaseous chlorine has as yet proved successful.

$$CI \quad CI + H \xrightarrow{R} O \\ B \\ CI \qquad R$$

$$CI \quad CI + H \xrightarrow{R} O \\ B \\ CI \qquad R$$

$$CI \quad CI + H \xrightarrow{R} O \\ B \\ CI \qquad R$$

$$CI \quad CI + H \xrightarrow{R} O \\ B \\ CI \qquad R$$

$$CI \quad CI + H \xrightarrow{R} O \\ B \\ CI \qquad R$$

A somewhat similar mechanism was proposed for the direct bromination of the neutral acetylacetone chelates. However we must suppose that the $SbCl_6^-$ anion assists the chlorination process; bis(1,3-diketonato) boronium hexachloroantimonates are chlorinated smoothly in a specific position, whereas the corresponding perchlorates (Ia, b, c; $X = ClO_4^-$; Y = H) undergo decomposition when treated with chlorine gas. A marked difference in electron-accepting behaviour between arylphyryllium hexachloroantimonates and perchlorates was reported recently. 23

TABLE 1. BERYLLIUM AND BORONIUM CHELATES OF THE 2-CHLORO-1,3-DIKETONES

M	R	R'	Y	x	m.p. °C	C		Н		Cl	
						Found	Calc	Found	Calc	Found	Calc
Be	Me	Me	Cl		177	43.89	43-50	4-61	4-38	25-3	25.68
В	Me	Me	Cl	SbCl ₆	138	18-53	19-61	1.94	1.98	46-3	46-32
B*	Me	Me	Cl	ClO	200	31-13	31-82	3-23	3.21	18-5	18-80 ^b
В	Me	Ph	Cl	SbCl ₆	155	32.38	32-61	2.84	2.19	38-5	38-51

Boron content determined from the combustion residue taken as B₂O₃: Found 3.14, Calc 2.86%

TABLE 2. UV ABSORPTION SPECTRA OF THE BERYLLIUM AND BORONIUM CHELATES OF THE 2-CHLORO-1,3-DIKETONES

M	R	R'	Y	х	UV-maxima; λ _{max} /ε		
Н	Me	Me	Cl	_	_	295/17,000	
Be	Me	Me	Cl		259sh/2,500	316/24,400	
В	Me	Me	Cl	SbCl ₆	276/11,300	327/20,700	
В	Me	Me	Cl	ClO ₄	277sh	328	
В	Me	Ph	C1	SbCl ₆	278sh 29	6 372	

Solvent: 1,2-dichloroethane.

b Chlorine from ClO₄ not included in this figure.

Table 3. IR spectra (cm. $^{-1}$) of 3-chloroacetylacetone, bis-(chloroacetyl-acetonato)-beryllium and of bis-(1,3-diketonato)-boronium salts in KB1 disks $^{\circ}$ In CCl₄ solution

ClacacH ^a	Be(Clacac) ₂	[B(Clacac)₂] SbCl ₆	[B(Clacac) ₂] ClO ₄	[B(Clbzac) ₂] SbCl ₆	Assignments	
	_	_	_	3070w	vCH (Ph)	
3012 vw	3010 w	3015 w	3012 w	3012 w	-	
_	2965 vw		2960 mw			
_	2922 w	2910 m	2925 mw	2920 vw	vCH (Me)	
1720 mw	_	_	_	_	vC=O (keto form	
_		_	_	1600 m	$\nu C = C(Ph)$	
	_		_	1555 ms	$\nu C = C(Ph)$	
1610 s	1575 vs	1540-	1550-	1520-)	vC=O and vC=O	
	1480 vs	1490 vs	1490 vs	1470 vs }	(chelate ring)	
_	1440 vs	_	_	_	_	
1405 m	1380 vvs	1390 ms	1390 ms	1390 s	δ as CH (Me)	
1378 m	1350 vs	1330 vs	1330 vs	1340 s	δs CH (Me)	
1270 ms	1320 s	_		1302 s	_	
	1205 w		_	1190 m		
_) vw 1160–1090 vs	_	1160 s	_	
_	_	_	1128 vs	-	νCl—O (ClO ₄)	
_	1070 vs	1040 m	1040 ms	1080 vs	— (did 4)	
1040 m	1030 s	1020 m	1020 ms	1040 s	δr (Me)	
_		980 mw	982 m	980 s	v as ¹⁰ B—O (BO ₄	
940 mw	_	950 ms	950 ms	950 ms	v as 11B-O (BO	
920 m	933 ms	920 w	920 m	920 ms	$vC-CH_3 + vC=C$	
_	_	895 m	895 ms	975 ms	v as 11B-O (BO)	
_	855 vs	_	_	_	νBe-O (BeO ₄)	
_	_	_	_	855 ms	— · · · · · · · · · · · · · · · · · · ·	
_		_	_	792 ms	δCH (Ph)	
_	_	_		782 ms	δCH (Ph)	
_	760 m	740 w	740 w	_	-	
_	_	_	_	722 s	δCH (Ph)	
_	_		_	718 s	δCH (Ph)	
665 w	665 ms	652 w	650 w	680 ms	v as (C—Cl)	
_	648 mw		_	632 m		
_	_	590 mw	585 mw	610 m	δ as B—O (BO ₄)	
	_	550 w	550 w	530 mw		
520 mw	510 mw	490 mw	490 mw	502 w	v s (C—Cl)	
220 III W	455 m	-70 mm	770 11111	402 w	. 3 (0 0.)	

EXPERIMENTAL

Chlorination of $[B(acac)_2]SbCl_6$ (Ia, Y = H, X = $SbCl_6^-$). $[B(acac)_2]SbCl_6$ (15 g, 30 mmol) was dissolved in dry chloroform (200 ml) and chlorine gas was bubbled through the soln at 0° for 1 hr. Evaporation of the solvent in vacuo gave an almost quantitative yield of $[B(Clacac)_2]SbCl_6$ (Ia, Y = Cl, X = $SbCl_6^-$), m.p. 133–139°.

Chlorination of $[B(bzac)_2]SbCl_6$ (Ia, Y = H, X = $SbCl_6^-$) $[B(bzac)_2]SbCl_6$ (15 g 20 mmol) was suspended in dry chloroform (200 ml) and chlorine was bubbled through the soln at 0° during 5 hr when the Cl content of the ppt reached the value calculated for $[B(Clbzac)_2]SbCl_6$ (Ib, Y = Cl, X = $SbCl_6^-$). The yield was almost quantitative, m.p. 145–155°.

Chlorination of $[B(dbm)_2]SbCl_6$ (Ic, $Y = H, X = SbCl_6$) $[B(dbm)_2]SbCl_6$ (16 g. 20 mmol) was suspended in dry chloroform (200 ml) and Cl_2 was bubbled through the cooled mixture. The Cl content increased very

		Compound	i		Chemical shift		Solvent
M	R	R'	Y	X	Me (R,R')	H (Y)	
H	Me	Me	Н	_	8-0	4-6	CCI.
H	Me	Me	Cl	_	7.8	_	CCl ₄ *
Be	Me	Me	Н	_	7.98	4-37	CDCl ₃ ^b
Be	Me	Me	Cl		7-67	_	CDCl ₃
В	Me	Me	H	ClO ₄	7-40	3.24	CDCl ₃ ^b
В	Me	Me	Cl	ClO ₄	7-20	_	CDCl ₃
В	Me	Mc	H	SbCl ₆	7-42	3.36	CDCl ₃
В	Me	Me	Cl	SbCl ₆	7-22	_	CDCl ₃
В	Me	Ph	H	SbCl ₆	7-42	2.68	CH ₃ CN
В	Me	Ph	Cl	SbCl ₆	7-22	_	CH ₃ CN

Table 4. ¹H NMR chemical shifts of the bis-(1,3-diketonato)-beryllium and -boronium chelates (τ values)

slowly and was far below the theoretical value even after 12 hr; the UV spectrum showed that chlorination occurred to some extent.

Attempts to chlorinate the corresponding 1,3-diketonatoboronium perchlorates (Ia, b, c, $Y = H, X = ClO_4^-$) were unsuccessful; only intractable oils were obtained.

Syntheses from 3-chloro-2,4-pentanedione

- (i) 3-Chloro-2,4-pentanedione¹⁸ (2 ml, 2·3 g, 20 mmol) were dissolved in dry dichloromethane (20 ml); the soln was cooled to -20° and the required volume of BCl₃ was slowly condensed into the soln. The soln of [B(Clacac)₂)]Cl (Ia, Y = Cl, X = Cl⁻) was used directly in metathetical reactions as follows:
- (ii) Antimony pentachloride (1.3 ml, 3 g, 10 mmol) in dichloromethane (3 ml) was introduced with vigorous stirring into a cooled soln of $[B(Clacac)_2]Cl$ (10 mmol). The mixture was set aside overnight, evaporated to dryness, pressed on a porous plate, and recrystallized several times from dichloromethane until colourless crystals of $[B(Clacac)_2]SbCl_6$ (Ia, Y = Cl, X = $SbCl_6$), m.p. 137-138° were obtained.
- (iii) Anhydrous perchloric acid (1 g, 10 mmol) in dichloromethane (5 ml) was added to a stirred soln of [B(Clacac)₂]Cl (10 mmol). The soln was set aside overnight and was then evaporated in vacuo to yield a black oil, containing crystals of the product. This was washed with chloroform and the crystals (m.p. 200°) were recrystallized from dichloroethane.
- (iv) Alternative preparation of [B(Clacac)₂]SbCl₆. A soln of SbCl₅ (2·6 ml, 6 g, 20 mmol) with a drop of conc HCl in glacial AcOH (5 ml) was added to a sturred soln of 3-chloroacetylacetone (4 ml, 5 g, 40 mmol) and tri-n-butyl borate (6 ml, 44 g, 20 mmol) in glacial AcOH (10 ml). After 2 hr the soln was evaporated in vacuo and the residue was recrystallized several times from dichloromethane to yield [B(Clacac)₂]SbCl₆, m.p. 134-138°.
- (v) Synthesis of Be(Clacac)₂ (IIa, Y = Cl). A soln of anhyd beryllium chloride (2 g; 25 mmol) in EtOAc (40 ml) was added to 3-chloroacetylacetone (6 ml, 7 g, 50 mmol) in EtOAc (10 ml). The mixture was heated under reflux until the evolution of HCl ceased (ca 3 hr) and then concentrated to dryness. The black residue was extracted in a Soxhlet extractor with light petroleum (b.p. 70-80°). The soln in light petroleum was cooled to yield yellow crystals of Be(Clacac)₂ (2·2 g, 30%), m.p. 177°.

Analyses and spectra. Analytical figures are summarized in Table 1. C and H were determined by standard combustion, Cl by argentometric titration of samples decomposed in boiling 2N KOH soln 3-Chloro-acetylacetone gave a correct figure for Cl by this procedure. UV spectra were taken by an Optica Milano-CF4 spectrophotometer, 1R spectra were recorded with a Carl Zeiss Jena UR-10 spectrophotometer. NMR spectra were recorded on a Perkin-Elmer R 10 instrument at 60-004 MHz for protons and 19-2519 MHz for boron-11.

Acknowledgements—Thanks are expressed to Mrs. M. Paraschiv and Mrs. E. Romaş for recording UV and IR spectra and to Mrs. M. Roman for elementary analyses.

^a Enol tautomer, see D. C. Nonhebal, Tetrahedron 24, 1869 (1968).

^{*} Ref 12.

REFERENCES

- ¹ A. Barabás, E. Işfan, M. Roman, M. Paraschiv, E. Romaş and A. T. Balaban, Tetrahedron 24, 1133 (1968)
- ² A. Barabas, E. Isfan, E. Romas and A. Trestianu, Rev. Roumaine Chim. 14, 253 (1969)
- ³ R. W. Kliuber, J. Am. Chem. Soc. 82, 4839 (1960); 83, 3030 (1961)
- ⁴ R. M. Klein and J. C. Bailar, Jr., Inorg. Chem. 2, 1187 (1963)
- ⁵ C. Djordjevic, J. Lewis and R. S. Nyholm, J. Chem. Soc. 4778 (1962)
- ⁶ J. P. Collman, R. P. Blair, R. L. Marshall and L. Slade, Inorg. Chem. 2, 576 (1963)
- ⁷ J. P. Collman, R. L. Marshall, W. L. Young and C. T. Sears, J. Org. Chem. 28, 1449 (1963)
- ⁸ Y. Nakamura and S. Kawaguchi, Bull. Chem. Soc. Japan 40, 1179 (1967)
- ⁹ Y. Nakamura, M. Hirata and S. Kawaguchi, Ibid. 40, 2572 (1967)
- Y. Nakamura and S. Kawaguchi, *Ibid.* 38, 954 (1965); T. Ogura, Y. Kojima, Y. Nakamura and S. Kawaguchi, *Ibid.* 38, 1468 (1965)
- Y. Murakami and T. Wakabayashi, Ibid. 38, 2207 (1965); Y. Murakami and K. Nakamura, Ibid. 41, 1859 (1968)
- ¹² A. Trestianu, H. Niculescu-Majewska, I. Bally, A. Barabás and A. T. Balaban, Tetrahedron 24, 2499 (1968)
- ¹³ UV Spectral Data, API Research Project No. 44, Vol. I, serial No. 349; Absorption Spectra in the Visible and Ultraviolet Region, L. Lang, ed., spectrum No. 280, Vol. II, p. 253. Akadémiai Konyvkiadó, Budapest, Hungary
- ¹⁴ J. A. S. Smith and E. J. Wilkins, J. Chem. Soc. (A), 1749 (1966)
- 15 J. C. Hammel, J. A. S. Smith and E. J. Wilkins, Ibid. (A), 1461 (1969)
- ¹⁶ J. C. Hammel and J. A. S. Smith, *Ibid.* (A), 1852 (1970)
- ¹⁷ R. C. Fay and N. Serpone, J. Am. Chem. Soc. 90, 5707 (1968)
- ¹⁸ J. C. Hammel and J. A. S. Smith, J. Chem. Soc. (A), 2883 (1969)
- ¹⁹ J. C. Hammel and J. A. S. Smith, *Ibid.* (A), 1855 (1970)
- ²⁰ J. C. Hammel, J. A. S. Smith, A. Barabás and E. Isfan, unpublished results
- ²¹ J. C. Hammel, R. J. Lynch, J. A. S. Smith, A. Barabás and E. Isfan, J. Chem. Soc. (A), 3000 (1970)
- ²² M. M. Jones, Ligand Reactivity and Catalysis p. 18. Academic Press, New York (1968)
- ²³ M. Fărcașiu and D. Fărcașiu, Chem. Ber. 102, 2294 (1969)
- ²⁴ M. Suzuki and M. Nagawa, J. Pharm. Soc. Japan 73, 394 (1953); Chem. Abstr. 48, 3295 (1954)